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• Maternal dioxin levels were 2- to 5-fold
higher in the dioxin-contaminated re-
gion.

• Salivary DHEA level in children was
higher in the dioxin-contaminated re-
gion.

• Serum androstenedione level in
mothers was higher in the dioxin-
contaminated region.

• Salivary DHEA in children related posi-
tively with serum androstenedione in
mothers.

• Dioxin enhanced androgens biosynthe-
sis in both mother and children.
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Over the past decades, southern Vietnam has been burdened by dioxins from contaminated herbicides sprayed
during theVietnamWar. In a previous study,we found that dioxin exposure decreased levels of salivary dehydro-
epiandrosterone (DHEA), an adrenal androgen, in 3-year-old children. In present study, to assess the relationship
between adrenal hormones disruption in lactating mothers and in children, we compared mother-child pairs
from dioxin- and nondioxin-contaminated regions. In 2010 and 2011, mother-child pairs from a dioxin hotspot
region (n = 37) and a non-contaminated region (n = 47) were recruited and donated breast milk and serum
samples for dioxin and steroid hormones determination. Mothers were 20–30 years old and had given birth to
their first child between 4 and 16 weeks previously. One year later, saliva samples were collected from the chil-
dren. Dioxin levels in breast milk were determined by gas chromatography/high-resolution mass spectrometry.
Salivary DHEA, cortisol in children and androstenedione (A-dione), estradiol, cortisol, and DHEA in maternal
serumwere analyzed by liquid chromatography/tandemmass spectrometry. Concentrations of dioxin congeners
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in the hotspot regionwere 2- to 5-fold higher than in samples from the non-contaminated region. Salivary DHEA
levels in children and serum A-dione levels inmothers were significantly higher in the hotspot region; no differ-
ence was found in the levels of other hormones. Moreover, there was a significant positive correlation between
the elevated hormone levels in mothers and children (r = 0.62, p b 0.001). Several dioxin congeners exhibited
strong significant dose-response relationships with salivary DHEA and serum A-dione levels. Our findings sug-
gest that dioxin disrupts adrenal androgens inmothers andbreastfeeding children through the samemechanism.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The past few decades have seen a growing interest in the health ef-
fects posed by endocrine-disrupting chemicals (EDCs), which interfere
with the biosynthesis, transport, and metabolism of steroid hormones
and are associated with disease and disability (Frye et al., 2012). EDCs
may affect exposed individuals and their children, aswell as subsequent
generations (Schug et al., 2011). Some studies have shown that children
aremore sensitive than adults to toxic chemicals; therefore, assessment
of endocrine effects in children is essential (Dourson et al., 2004;
Needham and Sexton, 2000). Numerous studies have addressed the ef-
fects of dioxins, which are widespread and persistent toxic chemicals
generated as by-products of industrial and agricultural activities
(Dwyer and Themelis, 2015; Gilpin et al., 2003; Liberti, 2014;
Sappington et al., 2015).

During 1962 to 1971, the United States Air Forces sprayed dioxin-
contaminated herbicides over South of Vietnam for the purposes of de-
foliation and crop destruction. It has been suggested that dioxin have
caused teratogenic health effects, cancer, and neurodevelopmental dis-
orders (Sterling and Arundel, 1986; Pham et al., 2015a, 2015b; Tran
et al., 2016). Despite natural elimination from the environment after
four decades, elevated levels of dioxins are still recorded at some former
airbases, where herbicides were spilled or sprayed for security reasons
(Minh et al., 2009; Schecter et al., 2001; Stellman et al., 2003). Although
current maternal dioxin levels are decreased by around hundred times
in comparison to extremely high TCDD level of 1832 parts per trillion
in breastmilk samples collected in 1970, dioxin concentrations in breast
milk and in the blood of adult men in polluted regions are still three to
five times higher than those recorded in non-contaminated regions
(Hue et al., 2014; Manh et al., 2014; Manh et al., 2015; Schecter et al.,
1995).

The three regionsmost severely pollutedwith dioxins, BienHoa, Phu
Cat, and Da Nang, are termed “hotspots” (Dwernychuk, 2005). In addi-
tion to direct exposure from the environment, transfer of dioxins
through the food chain is the main route of indirect human exposure
for Vietnamese living in and around these regions (Mai et al., 2007;
Schecter et al., 2006; Schecter et al., 2003). Because of their highly lipo-
philic properties and long half-life, dioxins accumulate in adipose tis-
sues and are excreted in breast milk (Van den Berg et al., 1994;
Ulaszewska et al., 2011). It has been reported that maternal dioxin
body burdens decrease on average by 20%–30% during the lactation pe-
riod (Abraham et al., 1996). Therefore, infants have a high risk of dioxin
exposure from breast milk.

To date, multiple studies have focused on health risk assessments of
residents at dioxin hotspots (Anh et al., 2014; Phamet al., 2015a, 2015b;
Tuyet-Hanh et al., 2015; Van Thuong et al., 2015). However, few studies
have looked into the endocrine effects of dioxins in humans. In the past
10 years, our group conducted epidemiological studies in hotspots in
Vietnam, to determine the impact of dioxin exposure on the endocrine
system, focusing in particular on steroid hormone disruption.

Our recent findings suggest that dioxin exposure leads to a disrup-
tion of several sex hormones with age, leading to a higher incidence of
prostate cancer in Vietnamese men from a hotspot region (Sun et al.,
2017). Furthermore, we previously reported significant associations be-
tween dioxin concentrations in breast milk and cortisol or cortisone
levels in maternal serum or saliva (Kido et al., 2014; Manh et al., 2013;
Nhu et al., 2010). Our group also found that infants born tomothers cat-
egorized in high cortisol group, tended to exhibit low birth weight (Van
Tung et al., 2016). Regarding endocrine disruption in children, we previ-
ously found that salivary dehydroepiandrosterone (DHEA) level, a
major adrenal androgen, is lower by approximately 50% in 3-year-old
children from a hotspot region, compared with children from a control
region. Moreover, the salivary DHEA levels were associated negatively
with maternal dioxin concentrations in breast milk (Kido et al., 2016).
However, whether dioxin-induced hormone disruption in children cor-
relateswithmaternal hormone disruption is still unknown. To elucidate
the endocrine effects of dioxin exposure on a more immature stage of
development, the current study focused on adrenal glucocorticoids
and androgens in mother and 1-year-old child pairs.

In Vietnam, children are breastfed mainly to least 12 months. Thus,
breastfeeding was the major route of dioxin exposure for children in
the present study.We therefore consideredmaternal dioxin levels to re-
flect the dioxin body burden in these children.Moreover, the estimation
of multiple hormones in infants is difficult because the levels are
low, and preferred sampling methods should be non-invasive.
Therefore, we selected saliva as our testingmatrix because it can be col-
lected non-invasively by established methods (Kido et al., 2014; Lewis,
2006).

In this study, we firstly measured hormone levels in mother and
paired 1-year-old child by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS). Following the steroid hormone biosynthesis
pathway in the adrenal gland, key enzymatic activities of 3β-
hydroxysteroid dehydrogenase (3β-HSD) and cytochrome P450 17A1
lyase (CYP17 lyase)were calculated. Finally, we evaluated the hormonal
correlation between mother-child pairs and the association between
the hormone levels or enzymatic activities and maternal dioxin
congeners.

2. Subjects and methods

2.1. Study region

The hotspot region selected for the studywas BienHoa, an industrial
city in Dong Nai Province east of Ho Chi Minh City. Approximately 50%
of the most contaminated herbicide (Agent Orange, AO) was stored in
the Bien Hoa airbase during the war time, and at least four AO spills oc-
curred there between 1969 and 1970 (Dwernychuk et al., 2002; Young,
2009). Elevated dioxin levels are still found in environmental and
human samples collected in and around this region (Huyen et al.,
2015; Nghi et al., 2015; Van Thuong et al., 2015). The non-
contaminated reference region used in this studywas the Kim Bang dis-
trict, which is located in northern Vietnam, and was therefore not
sprayed during herbicide operations. Moreover, as Kim Bang is a rural
area not located in an industrial development zone, agriculture is the
main activity there, and residents are not affected by industrial chemical
pollution (Manh et al., 2014; Nhu et al., 2011).

2.2. Subjects and sample collection

Participants were women aged 20–30 years who had given birth to
their first child 4 to 16 weeks previously. We recruited 52 mothers
from Bien Hoa (September 2010) and 52 mothers from Kim Bang
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(September 2011). Between 8:00 and 10:00 in the morning of enroll-
ment, breast milk and blood samples were collected from participants
by local support staff. Participants were also required to complete a
questionnaire concerning social characteristics, diseases, and hormonal
therapy, and body measurements were obtained for both mothers and
children. One year later, about 200–500 mg of saliva were collected
from the children between 08:00 and 10:00 in themorning using twee-
zers and hormone-free cotton swabs. To obtain hormone-free cotton,
cottonwas washedwith hot distilledwater and ethanol twice, followed
by natural evaporation at room temperature. Afterward, the cotton was
dried at 50–60 °C for several hours. DHEA levels in the cotton were
below the limit of quantitation (LOQ). Swabs were inserted into the
children's mouths and allowed to soak for 1 min. The soaked saliva cot-
ton swabs were then placed into conical tubes; the swabbing was re-
peated for a total of three replicates. The volume of saliva was
calculated by weight. Maternal blood collection and pre-treatment
methods at enrollment were outlined in detail previously (Kido et al.,
2016; Kido et al., 2014). To observe physical development, each child's
body indices were also measured. Some loss to follow-up (migration)
and censoring (missing answers in the questionnaire) occurred. Conse-
quently, breast milk, serum, and child saliva samples were available for
37 and 47mother-child pairs fromBienHoa and Kim Bang, respectively.
All samples were stored cold with dry ice for transportation and kept at
−70 °C until analysis in Japan.

This study was approved by the Medical Ethics Committee of Kana-
zawa University. Prior to sample collection, informed consent ensuring
identity masking and commitment to scientific purposes was given by
from each participant.

2.3. Instruments

2.3.1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)
We used an API-4000 triple-stage quadrupole mass spectrometer

(SCIEX, Framingham, MA, USA) combined with an Agilent 1100 liquid
chromatography (LC) system (Agilent Technologies, Santa Clara, CA,
USA) and CTC Analytics Pal Auto-Sampler System. The ion source was
operated in an electrospray ionization mode. The analytical columns
for salivary steroid analysis and serum steroid analysis were a Cadenza
CD-C18 (250 × 3 mm, 3 μm; Imtakt, Portland, OR, USA) and a Kinetex
C18 (150 × 2.1 mm, 1.73 μm; Phenomenex, Torrance, CA, USA),
respectively.

2.3.2. Gas chromatography-high resolution mass spectrometry (GC-HRMS)
We used an HP-6980 gas chromatograph (Hewlett-Packard, Palo

Alto, CA, USA) coupled to a JMS700 high-resolution mass spectrometer
(HRMS, JEOL, Tokyo, Japan) in the selected ion-monitoring mode at a
resolution of 10,000. The column used for GC was an ENV-5MS (30 m
× 0.25 mm, 0.25 μm; Kanto Chemical Co., Inc., Tokyo, Japan).

2.4. Analysis of maternal serum hormone levels by LC-MS/MS

Analyses of steroid hormone levels in serumwere performed follow-
ing the protocol reported previously (Kido et al., 2016; Kido et al., 2014).
Serum (200 μL)was dilutedwith purifiedwater to 1mL and spikedwith
cortisol-2H4 (1 ng), DHEA-2H4 (100 pg), and estradiol-13C4 (100 pg) as
internal standards. After extractionwith ethyl acetate, successive purifi-
cation with cartridge column and derivatization with anhydrous
picolinic acid were carried out according to Yamashita et al. (2009).
The purified extract was injected to an LC-MS/MS to determine cortisol,
DHEA, androstenedione (A-dione), and estradiol (E2) levels. Both the
accuracy and precision in inter- and intra-day assays were within
±20% of estimate values at the lowest levels, and both were within
±15% of estimated values for all concentrations other than the lowest
level.

The ratios of (androgen + estrogen) to cortisol and the ratios of
A-dione to DHEA were calculated from individual serum levels using
the following equations, and were defined as CYP17 lyase activity and
3β-HSD activity, respectively (Li and Wang, 2005; Sun et al., 2017).

Androgenþ estrogenð Þ : cortisol ratio as CYP17 lyase activity %ð Þ
¼ 100� DHEAþ A−dioneþ E2 levelsð Þ= cortisol levelð Þ

A−dione : DHEA ratio as 3β−HSD activity %ð Þ
¼ 100� A−dione levelð Þ= DHEA levelð Þ

2.5. Child salivary hormone analysis

After extracting the saliva-soaked cotton swabs with ethanol three
times, the obtained solution was spiked with 1 ng cortisol-2H4 and
100 pg DHEA-2H4 as internal standards. The mixture was evaporated
in a centrifugal evaporator at 40 °C. Following dilution with water, the
solution was extracted by ethyl acetate and the organic layer was evap-
orated. The dried extract was purified on a cartridge column (Bond Elut
C-18; Agilent Technologies). Purified sampleswere derivatizedwith an-
hydrous picolinic acid. DHEA and cortisol derivatives were analyzed by
LC-MS/MS, as described in Section 2.4. The lowest estimated levels, ac-
curacy, and precision were the same as those described in Section 2.4.
We did not determine testosterone and A-dione levels in children, as
they were too low to detect in the children's saliva samples.

The androgen:cortisol ratio was calculated from DHEA and cortisol
levels in saliva and defined as CYP17 lyase activity (Li and Wang,
2005; Sun et al., 2017).

Androgen : cortisol ratio as CYP17 lyase activity %ð Þ
¼ 100� DHEA levelð Þ= cortisol levelð Þ:

2.6. Dioxin analysis by GC-HRMS

Dioxins in breast milk samples were quantified according to a previ-
ously reported procedure (Tawara et al., 2011; The Tai et al., 2011). After
a series of sample treatments, including extraction, clean-up, purifica-
tion, internal standard spike (40–80 pg of each 2,3,7,8-substituted 13C-
labeled dioxins/furans), and nitrogen flow evaporation, the obtained
extracts were reconstituted with 20 μL of nonane containing 40 pg of
each 13C-labeled 1,2,3,4-tetrachlorodibenzo-p-dioxin (TCDD) and 13C-
labeled 1,2,7,8-tetrachlorodibenzofuran (TCDF), followed by analysis
with GC-HRMS. Ten congeners of polychlorinated dibenzo-p-dioxins
(PCDDs) and seven congeners of polychlorinated dibenzofurans
(PCDFs) were quantified. The limit of detection (LOD) was set at a
signal-to-noise ratio of 3, and concentrations below the LOD were
assigned a value equal to half of the LOD. The estimated concentrations
are shown as pg/g lipid. The toxic equivalency (TEQ) values of 17 conge-
ners were obtained by multiplying the concentration (pg/g lipid in
milk) by the updatedWorld Health Organization toxic equivalency fac-
tors (TEF) (Van den Berg et al., 2006).

In addition, in present study, dioxin daily intake (DDI) of children
was calculated using the following equation from our previous study
(Manh et al., 2015).

DDI pg−TEQ=kg bw=dayð Þ ¼ 800� L � TEQð Þ=W

L: lipid content of breast milk sample (%); TEQ: dioxin TEQ concentra-
tion (pg-TEQ/g lipid); W: body weight of child (kg).

2.7. Statistical analysis

All variables were transformed into log10 form to improve normali-
ty. Distributions of variables were checked using the Shapiro-Wilk test,
and appropriate methods were then applied for data analysis. Chi-
squared, Student's t-test, or the Wilcoxon test were used for
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comparisons, depending on the type and distribution of variables. Since
anthropometric values increase with age, body measurements of
mothers and children were adjusted for age for analysis of covariance
(ANCOVA). Hormonal associations between mothers and children
were expressed by Pearson correlation coefficient for pairs of normal-
distribution variables and by Spearman's correlation coefficient if one
of the variables was not distributed normally. For children, multiple re-
gression analysis was performed with salivary DHEA or CYP17 lyase ac-
tivity as dependent variables and maternal dioxin levels and children's
age, bodymass index (BMI), and sex as independent variables. In anoth-
er multiple regression analysis for mothers, serum A-dione or 3β-HSD
activity was used as the dependent variable, andmaternal dioxin levels,
age, and BMI as independent variables. Statistical significance was de-
termined at p b 0.05. All statistical analyses were performed using the
JMP statistical discovery software version 9.0 (SAS Institute, Cary, NC,
USA).
Table 2
3. Results

3.1. Characteristics of study subjects

Table 1 displays the demographic characteristics of the study partic-
ipants. Mothers from the hotspot region were older than mothers from
the non-contaminated region. Income was also significantly higher in
the hotspot region, because it is located in an industrial zone. Children
from the hotspot region were older than children from the non-
contaminated region. After adjustment for age, measures of children
from the hotspot region displayed significantly greater height, weight,
BMI, and head circumference than those from thenon-contaminated re-
gion after age adjustment.
Table 1
Characteristics of study subjects.

Subjects Parameters Estimation values p

Hotspot (n =
37)

Non-contaminated (n
=
47)

Mothers Year old (years) 26 (24–27) 22 (20–26) ⁎⁎,a

Height (cm) 150.9 ± 4.5 150.6 ± 4.8 n.s.c

Weight (kg) 48.6 ± 6.1 48.3 ± 5.3 n.s.c

BMI (kg/m2) 21.7
(19.2–23.1)

20.7 ± 2.0 n.s.c

Residency (years) 13 (4–26) 20 (18–24) n.s.a

Income (106 VND) 5.2 ± 3.4 3.5 (2.5–4.8) ⁎,a

Children Gender Boy (n = 25) Boy (n = 25) n.s.b

Girl (n = 12) Girl (n = 22)
Month old
(months)

15 (14–16) 14 (14–15) ⁎⁎,a

Height (cm) 80.2 ± 3.2 76.3 ± 3.0 ⁎⁎⁎,d

Weight (kg) 10 (9–11) 9.1 ± 1.2 ⁎⁎,d

BMI (kg/m2) 15.6
(15.2–17.0)

15.4 (14.4–16.2) ⁎,d

Head (cm) 46.3
(44.8–47.8)

44.9 ± 1.0 ⁎⁎,d

Chest (cm) 46.8
(45.4–48.6)

45.8 (44.0–47.0) n.s.d

Data are reported as mean ± standard deviation for a normal distribution and as median
(interquartile range) for data that were not distributed normally.
BMI: body mass index.
n.s. not significant.

a Wilcoxon test.
b Chi-squared test.
c Analysis of covariance (ANCOVA) was adjusted for maternal age.
d ANCOVA was adjusted for children's age.
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
3.2. Maternal levels of dioxin congeners

Table 2 shows the LOD of dioxin analysis and the concentrations
of 17 dioxin and furan congeners, TEQs and DDI levels in
maternal breast milk. Most levels measured were significantly (2- to
5-fold) higher in the hotspot group than in the non-contaminated
group, except for levels of the furan congeners 2,3,7,8-TCDF, 1,2,3,7,8-
pentachlorodibenzofuran (PeCDF), 1,2,3,7,8,9- and 2,3,4,6,7,8-
hexachlorodibenzofuran (HxCDF), and octachlorodibenzofuran
(OCDF). The TEQs of PCDDs and PCDFs, along with the values of total
TEQs of PCDDs and PCDFs, were 2- to 3-fold higher in the hotspot region
than in the non-contaminated region. The DDI of total TEQs was signif-
icantly higher in the hotspot region than in the non-contaminated
region.

3.3. Hormone levels in mother-child pairs

Table 3 and Fig. 1 display the LOQ of hormone analysis, the hormone
levels in mother-child pairs and the biosynthesis pathway of steroids in
the adrenal gland. There were significant differences between the
groups,with higher A-dione levels, CYP17 lyase activity, and 3β-HSD ac-
tivity in mothers from the hotspot region. In contrast, DHEA, cortisol,
and E2 levels did not differ significantly between the two groups. In chil-
dren, salivary DHEA levels and CYP17 lyase activity in subjects from the
hotspot regionwere significantly higher than those of subjects from the
non-contaminated region, but cortisol levels did not differ. We did not
observe any differences in hormone levels between male and female
children from the hotspot region, the non-contaminated region, or the
combined cohort (data not shown).
Dioxin congener levels in maternal breast milk samples.

Dioxin congeners LOD
(pg/g
lipid)

Dioxin concentrations (pg/g
lipid)

Ratioa p

Hotspot (n
= 37)

Non-contaminated
(n = 47)

GM GSD GM GSD

2,3,7,8-TeCDD 0.01 2.04 2.47 0.56 1.77 3.6 ⁎⁎⁎,b

1,2,3,7,8-PeCDD 0.01 2.82 1.63 1.04 1.80 2.7 ⁎⁎⁎,b

1,2,3,4,7,8-HxCDD 0.02 1.45 1.58 0.79 1.83 1.8 ⁎⁎⁎,b

1,2,3,6,7,8-HxCDD 0.02 4.79 1.86 1.23 1.68 3.9 ⁎⁎⁎,b

1,2,3,7,8,9-HxCDD 0.02 1.66 1.80 0.58 1.76 2.9 ⁎⁎⁎,b

1,2,3,4,6,7,8-HpCDD 0.02 9.37 1.76 2.40 1.93 3.9 ⁎⁎⁎,c

OCDD 0.05 60.61 1.68 16.14 1.78 3.8 ⁎⁎⁎,b

2,3,7,8-TeCDF 0.01 0.46 1.82 0.64 1.62 0.7 ⁎,b

1,2,3,7,8-PeCDF 0.01 0.48 1.95 0.38 2.04 1.3 n.s.c

2,3,4,7,8-PeCDF 0.01 4.33 1.52 3.03 1.42 1.4 ⁎⁎⁎,b

1,2,3,4,7,8-HxCDF 0.02 7.19 1.89 1.56 1.59 4.6 ⁎⁎⁎,c

1,2,3,6,7,8-HxCDF 0.02 4.27 1.83 1.30 1.45 3.3 ⁎⁎⁎,c

1,2,3,7,8,9-HxCDF 0.02 0.36 2.00 0.33 1.60 1.1 n.s.b

2,3,4,6,7,8-HxCDF 0.02 0.67 1.87 0.53 1.72 1.3 n.s.b

1,2,3,4,6,7,8-HpCDF 0.02 4.75 1.85 1.01 2.10 4.7 ⁎⁎⁎,c

1,2,3,4,7,8,9-HpCDF 0.02 0.67 2.31 0.22 1.64 3.0 ⁎⁎⁎,b

OCDF 0.05 0.62 1.70 0.64 1.64 1.0 n.s.b

TEQs PCDDs 6.18 1.84 2.00 1.56 3.1 ⁎⁎⁎,b

TEQs PCDFs 2.75 1.61 1.41 1.34 2.0 ⁎⁎⁎,c

Total TEQs 9.19 1.71 3.48 1.39 2.6 ⁎⁎⁎,b

DDI of total TEQs
(pg-TEQ/kg bw/day)

22.28 2.40 7.00 1.72 3.2 ⁎⁎⁎,b

Data are reported as GM and geometric standard deviation (GSD).
LOD: limit of detection, TEQs: the toxic equivalency values, DDI: dioxin daily intake of
children.
Total TEQs: sum of TEQs of polychlorinated dibenzo-p-dioxins (PCDDs) and of
polychlorinated dibenzofurans (PCDFs).
n.s. not significant.

a Ratios of dioxin geometric mean (GM) in the hotspot region and the non-contami-
nated region.

b Student's t-test.
c Wilcoxon test.
⁎ p b 0.05.

⁎⁎⁎ p b 0.001.



Table 3
Hormone levels in mother-child pairs.

Parameters LOQ
(ng/assay)

Hormone levels or % (ng/ml or %) p

Hotspot
(n = 37)

Non-contaminated
(n = 47)

In mothers' serum
DHEA 0.005 3.28 ± 1.24 2.82 (2.33–3.92) n.s.b

A-dione 0.01 1.91 ± 1.00 0.61 ± 0.27 ⁎⁎⁎,a

Estradiol 0.0005 0.02
(0.01–0.03)

0.01 (0.004–0.02) n.s.b

Cortisol 0.05 104.25 ± 50.94 91.20 ± 36.53 n.s.a

CYP17 lyase activity (%) 5.39
(4.45–6.48)

4.68 ± 2.23 ⁎,b

3β-HSD activity (%) 63.08 ± 32.37 19.58 ± 6.60 ⁎⁎⁎,a

In children's saliva
DHEA 0.005 0.13 ± 0.08 0.04 ± 0.02 ⁎⁎⁎,a

Cortisol 0.05 1.14 ± 0.83 0.81 (0.58–1.16) n.s.b

CYP17 lyase activity (%) 13.88 ± 8.33 4.79 ± 4.45 ⁎⁎⁎,a

Data are reported as mean ± standard deviation for a normal distribution and as median
(interquartile range) for data that were not distributed normally.
CYP17 lyase activity inmothers' serum (%)= 100 × (DHEA+A-dione+E2 levels) / (cor-
tisol level).
CYP17 lyase activity in children's saliva (%) = 100 × (DHEA level) / (cortisol level).
3β-Hydroxysteroid dehydrogenase (3β-HSD) activity (%) = 100 × (A-dione level) /
(DHEA level).
LOQ: limit of quantitation (lowest estimated level), DHEA: dehydroepiandrosterone, A-
dione: androstenedione.
n.s. not significant.

a Student's t-test.
b Wilcoxon test.
⁎ p b 0.05.

⁎⁎⁎ p b 0.001.
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3.4. Correlation betweenmaternal serum hormone levels and child salivary
hormone levels

Table 4 shows the relationship between hormone levels in mother-
child pairs. Mothers' A-dione levels were associated with DHEA levels
in their children (Fig. 2; r = 0.62, p b 0.001). No significant correlation
Fig. 1. The steroid biosynthesis pathway in the adrenal gland. 3β-HSD: 3β-hydroxy
hydroxyprogesterone, A-dione: androstenedione, CYP11A: P450scc cholesterol 20,22 side-cha
cyt b5: cytochrome b5.
Bhatt et al. (2016); Li and Wang (2005); Voutilainen and Jääskeläinen (2015); Yoshimoto and
was found between child DHEA or cortisol levels and other maternal
hormone levels.

3.5. Correlation between maternal and child hormone levels and
concentrations of dioxin/furan congeners in maternal breast milk

Significant associations were found between most dioxin/furan
congeners and children's salivary DHEA levels and CYP17 lyase activity
or mothers' serum A-dione levels and 3β-HSD activity. Fig. 3 shows the
associations with the highest correlation coefficient values. In children,
we found a significant correlation between 1,2,3,4,7,8-HxCDF and sali-
vary DHEA levels (r = 0.59, p b 0.001) and CYP17 lyase activity (r =
0.45, p b 0.001), as well as between total TEQs and salivary DHEA levels
(r = 0.47, p b 0.001). In mothers, we found a significant correlation be-
tween 1,2,3,4,7,8-HxCDF and serumA-dione levels (r=0.71, p b 0.001),
1,2,3,6,7,8-HxCDF and 3β-HSD activity (r = 0.75, p b 0.001), and total
TEQs and serum A-dione levels (r = 0.62, p b 0.001).

3.6. Correlation between maternal and child hormone levels and dioxin
congener levels using multiple regression analysis

Table 5 shows the results of multiple regression analysis using sali-
vary DHEA levels and CYP17 lyase activity in children or A-dione levels
and 3β-HSD activity in mothers as dependent variables. We found that
two among the 17 congeners, 1,2,3,4,7,8- and 1,2,3,6,7,8-HxCDF,
showed a strong correlation with hormone levels and enzyme
activities (β = 0.55 and 0.52, respectively, for salivary DHEA levels in
children; β = 0.42 and 0.40, respectively, for CYP17 lyase activity in
children; β=0.74 and 0.71, respectively, for A-dione levels inmothers;
β = 0.76 and 0.78, respectively, for 3β-HSD activity in mothers).

4. Discussion

Although dioxins as a group are suspected to cause long-term endo-
crine disruption, few epidemiological studies have investigated dioxin
exposure in infants (Patisaul and Adewale, 2009).

The salivary concentration represents the free form of a serum hor-
mone and its quantity is b10% of serum levels. As salivary hormones
steroid dehydrogenase, 17OH-preg: 17α-hydroxypregnenolone, 17OH-prog: 17α-
in cleavage, CYP17 hydroxylase: p450 17α-hydroxylase, CYP17 lyase: p450 17,20-lyase,

Auchus (2015).



Table 4
Correlation between serum hormone levels in mothers and salivary hormone levels in
paired children.

Hormones Subjects (n = 84)

Children DHEA
(pg/ml)

Children cortisol
(pg/ml)

r p-Value r p-Value

Mothers DHEA (ng/ml) 0.06b n.s. −0.06b n.s.
Mothers A-dione (ng/ml) 0.62a ⁎⁎⁎ 0.09b n.s.
Mothers estradiol (pg/ml) 0.09b n.s. 0.04b n.s.
Mothers cortisol (ng/ml) 0.12a n.s. −0.05b n.s.

n.s. not significant.
a Pearson correlation coefficient.
b Spearman's correlation coefficient.

⁎⁎⁎ p b 0.001.
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are known to be strongly associated with serum hormones, many re-
searchers made themost of salivary hormone analysis in their epidemi-
ology and clinical studies (Kido et al., 2014; Adam and Kumari, 2009;
Inder et al., 2012). The hormone estimation by LC-MS/MS has consider-
ably higher specificity and sensitivity than usual immunoassaymethod.
In this study of Vietnamese mother-child pairs, levels of serum A-dione
in mothers and salivary DHEA in children were significantly higher
(nearly 3-fold) in the hotspot region than in the non-contaminated re-
gion. In contrast, levels of other adrenal hormones in either children
or mothers did not differ between the two regions (Table 3).

Secretion of both DHEA and cortisol from individual cells in the ad-
renal gland is regulated by the adrenocorticotropic hormone (ACTH)
(Rege et al., 2013). As shown in Table 3, the levels of salivary DHEA in
children or serum A-dione in mothers were higher in the hotspot re-
gion; however, cortisol levels were not. We therefore speculate that di-
oxins may directly influence steroid hormone biosynthesis in the
adrenal gland.

The human adrenal gland is composed of the zona glomerulosa (ZG),
zona fasciculata (ZF), and zona reticularis (ZR). Each layer is responsible
for the production of specific hormones: Mineralocorticoids in the ZG,
glucocorticoids in the ZF, and precursors of active androgen in the ZR
(Voutilainen and Jääskeläinen, 2015). As shown in Fig. 1, DHEA
and cortisol are synthesized in different zones from pregnenolone in a
process catalyzed by cytochrome P450 17A1 (CYP17A1) enzyme,
which includes the 17α-hydroxylase and the 17,20-lyase catalytic
activity. With the appearance of both activities in the ZR, 17α-
hydroxypregnenolone is converted exclusively from pregnenolone by
17α-hydroxylase, followed by production of DHEA, catalyzed by
17,20-lyase (Yoshimoto and Auchus, 2015). In contrast, in the presence
Fig. 2. Correlation between serum A-dione levels in mothers and salivary
dehydroepiandrosterone (DHEA) levels in paired children.
of only 17α-hydroxylase but without 17,20-lyase activity in the ZF,
17α-hydroxyprogesterone is produced from progesterone, leading to
generation of cortisol (Li and Wang, 2005). In infants, adrenal cortical
cells contain an arrangement known as the fetal zona reticularis (ZRF)
(Miller, 2009; Rege and Rainey, 2012). High levels of CYP17 and cyto-
chrome b5 (cyt b5) are present in the ZRF, unlike 3β-HSD
(Voutilainen and Jääskeläinen, 2015).

In the present study, we evaluated CYP17 lyase activity in mother-
child pairs and 3β-HSD activity in mothers using ratios of hormone
levels as described methods. CYP17 lyase activity was significantly
higher in children from the dioxin hotspot indicating 17,20-lyase activ-
ity in the adrenal gland had been promoted. We therefore speculated
that dioxinsmay influence steroid hormone biosynthesis in the adrenal
gland through enzymatic activities. During pregnancy, a larger quantity
of DHEA is produced from maternal pregnenolone in the fetal zone of
the fetal adrenal cortex, and 80% of produced DHEA is converted into
placental estriol (Kaludjerovic and Ward, 2012). Within several weeks
of birth, DHEA levels decrease considerably, along with levels of cyt
b5, and remain low until the beginning of adrenarche formation (Rege
and Rainey, 2012). The CYP17 activities are modulated by cyt b5
(Bhatt et al., 2016). Therefore, we also hypothesized that dioxinmay in-
fluence the allosteric regulator function of cyt b5, leading to changes in
17,20-lyase activity in DHEA production in children's adrenal glands.

Between the ages of one and three, DHEA levels decrease. Beyond
that stage, DHEA levels increase gradually and reach their highest
point in the mid-twenties, then decrease (Turcu et al., 2014;
Voutilainen and Jääskeläinen, 2015). Previously, we found lower levels
of DHEA in the saliva of 3-year-old children from a dioxin hotspot re-
gion, suggesting a dioxin-induced delay in DHEA increases (Kido et al.,
2016). In fact, DHEA decreases considerably after birth due to the disap-
pearance of the fetal zone in the adrenal cortex. After one year, the ad-
renal cortex is differentiated into 3 layers clearly and DHEA is
produced in new generated ZR. In the present study, we assumed that
dioxin exposure might delay the change of the fetal zone leading to sig-
nificantly higher levels of DHEA in saliva of 1-year-old children from the
dioxin hotspot region.

As shown in Table 3 comparisons of steroid hormone levels showed
that dioxin may alter the steroid biosynthesis pathway in the maternal
adrenal gland as well. Significantly higher A-dione levels were found in
maternal serum samples from the hotspot region. A-dione, which is
converted from DHEA, is produced largely through the action of 3β-
HSD. The CYP17 lyase activity in subjects from the hotspot region was
significantly higher than that in subjects in the non-contaminated re-
gion (p b 0.05). We suggest that the levels of 17,20-lyase and 3β-HSD
activities were both stimulated, leading to promotion of serum A-
dione in mothers instead of cortisol or other C19 steroid hormones.
High CYP17 lyase activity inmothers from thehotspot regionwas deter-
mined by maternal A-dione production rather than by DHEA (Table 3).
These findings highlighted the functional difference between the ZR in
mothers and the ZRF in children, which corresponded to 3β-HSD activ-
ities. Baba et al. reported that 3β-HSDwas induced by dioxin via the aryl
hydrocarbon receptor (AhR) in mice (Baba et al., 2008); our epidemio-
logical findings are in accord with their biomolecular measurements.
Furthermore, Baba et al. suggested that AhR plays a role in female and
male reproduction and in modulation of steroid-regulating enzymes
such as CYP19 (aromatase) and steroid acute regulatory protein (Baba
et al., 2005). However, the factor implicated in the regulation of CYP17
remains unclear. AhR, which iswidely conserved among animal species,
is essential in maintaining normal physiological functions. Moreover,
AhR is a ligand-activated, transportable factor that mediates diverse di-
oxin toxicities (Mimura et al., 1997).

In the present study, we analyzed 17 dioxin congeners in breastmilk
samples. Among these compounds, 2,3,7,8-TCDD is well-known as a
toxic chemical with a TEF of 1.0, and considered a reference chemical
to which the toxicity of other congeners is compared (Van den Berg
et al., 2006). Levels of most dioxin congeners were 2–5 times higher in



Fig. 3. Correlation between maternal serum hormone levels or children's salivary hormone levels and concentrations of highly chlorinated furan congeners and Total TEQs in maternal
breast milk.
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the hotspot region than in the non-contaminated region (Table 2); five
furan congeners were the exception. Subjects from the non-
contaminated region may have been exposed to furan congeners from
agricultural herbicides or from combustion of household garbage
(Lemieux et al., 2000; Zhang et al., 2011).

Some highly chlorinated congeners, including 1,2,3,4,6,7,8-
heptachlorodibenzodioxin (HpCDD), octachlorodibenzodioxin
(OCDD), 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-
heptachlorodibenzofuran (HpCDF), were correlated with the levels of
DHEA in children and A-dione in mothers, suggesting that they acted
as endocrine disruptors in both mothers and children. 3β-HSD activity
was closely and specifically related to 1,2,3,4,7,8-HxCDF and
1,2,3,6,7,8-HxCDF (Table 5). R-squared values calculated with these
congeners as independent variables were relatively higher than values
calculated for TCDD. There were strong dose-response relationships be-
tween these congeners and steroid hormone levels as determined by
linearity correlation coefficient analysis (data not shown). In Japan,
Tsukimori et al. identified that 1,2,3,6,7,8-HxCDFwas the strongest con-
gener that affected fetal development in Yusho disease which was
caused by contaminated rice with non-ortho polychlorinated biphenyl
(PCBs), PCDF and PCDD (Tsukimori et al., 2013a, 2013b). In our previous
study, 1,2,3,4,7,8-hexachlorodibenzodioxin (HxCDD), 1,2,3,6,7,8-
HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, and 1,2,3,4,7,8,9-HpCDF exhibited
stronger significant dose-response relationships with mothers' serum
cortisol and children's salivary DHEA levels (Kido et al., 2016). This im-
plies that highly chlorinated dioxins and furans will tend to accumulate
more efficiently in adipose tissues and the adrenal gland because of
their lipophilicity and 8–10 year half-life. It is therefore necessary to
consider the toxicities of some highly chlorinated congeners that have
much lower TEF values but can cause a significant response in exposed
subjects.

We observed significantly higher salivary DHEA levels and CYP17
lyase activity in 1-year-old children from the hotspot region than
those from the non-contaminated region, but cortisol levels did not dif-
fer between the two regions. In mothers, we observed increases in
serum A-dione levels and CYP17 lyase activity. As shown in Fig. 2 and
Table 4, a significant positive relationship was found between the two
increased hormone levels in mothers and paired children. The levels
of dioxin congeners in the umbilical cords obtained from babies who
were born to mothers with Yusho poisoning disease were 2.5-fold
higher than those of healthy babies (Nagayama et al., 2010). Tsukimori
et al. demonstrated the dioxin level in cord blood approximately half of
that in maternal blood (Tsukimori et al., 2013a, 2013b). In present
study, dioxin in infants is transmitted by umbilical blood and breastmilk



Table 5
Correlations between hormone levels in mothers or children and dioxin congeners using multiple regression analysis.

Congener Children (n = 84) Mothers (n = 84)

DHEA CYP17 lyase activity A-dione 3β-HSD activity

β p r2 β p r2 β p r2 β p r2

2,3,7,8-TeCDD 0.35 ⁎⁎ 0.21 0.38 ⁎⁎ 0.19 0.57 ⁎⁎⁎ 0.28 0.54 ⁎⁎⁎ 0.25
1,2,3,7,8-PeCDD 0.37 ⁎⁎ 0.23 0.39 ⁎⁎ 0.19 0.58 ⁎⁎⁎ 0.33 0.65 ⁎⁎⁎ 0.41
1,2,3,4,7,8-HxCDD 0.20 ⁎ 0.14 0.09 n.s. 0.06 0.40 ⁎⁎ 0.15 0.40 ⁎⁎ 0.16
1,2,3,6,7,8-HxCDD 0.46 ⁎⁎⁎ 0.30 0.39 ⁎⁎ 0.20 0.62 ⁎⁎⁎ 0.37 0.66 ⁎⁎⁎ 0.42
1,2,3,7,8,9-HxCDD 0.41 ⁎⁎ 0.26 0.34 ⁎⁎ 0.16 0.58 ⁎⁎⁎ 0.33 0.61 ⁎⁎⁎ 0.37
1,2,3,4,6,7,8-HpCDD 0.53 ⁎⁎⁎ 0.35 0.42 ⁎⁎ 0.22 0.60 ⁎⁎⁎ 0.35 0.63 ⁎⁎⁎ 0.38
OCDD 0.53 ⁎⁎⁎ 0.34 0.42 ⁎⁎ 0.21 0.63 ⁎⁎⁎ 0.39 0.65 ⁎⁎⁎ 0.41
2,3,7,8-TeCDF −0.16 n.s. 0.12 −0.19 n.s. 0.09 −0.34 ⁎⁎ 0.13 −0.20 n.s. 0.06
1,2,3,7,8-PeCDF 0.03 n.s. 0.10 0.11 n.s. 0.07 0.15 n.s. 0.04 0.27 ⁎ 0.09
2,3,4,7,8-PeCDF 0.21 ⁎ 0.14 0.21 ⁎ 0.10 0.38 ⁎⁎ 0.15 0.40 ⁎⁎ 0.17
1,2,3,4,7,8-HxCDF 0.55 ⁎⁎⁎ 0.37 0.42 ⁎⁎ 0.21 0.74 ⁎⁎⁎ 0.52 0.76 ⁎⁎⁎ 0.56
1,2,3,6,7,8-HxCDF 0.52 ⁎⁎⁎ 0.33 0.40 ⁎⁎ 0.20 0.71 ⁎⁎⁎ 0.48 0.78 ⁎⁎⁎ 0.57
1,2,3,7,8,9-HxCDF −0.05 n.s. 0.10 −0.06 n.s. 0.06 0.04 n.s. 0.02 0.11 n.s. 0.03
2,3,4,6,7,8-HxCDF 0.002 n.s. 0.10 −0.04 n.s. 0.05 0.12 n.s. 0.03 0.19 n.s. 0.05
1,2,3,4,6,7,8-HpCDF 0.51 ⁎⁎⁎ 0.32 0.33 ⁎⁎ 0.14 0.62 ⁎⁎⁎ 0.37 0.66 ⁎⁎⁎ 0.42
1,2,3,4,7,8,9-HpCDF 0.35 ⁎⁎ 0.21 0.33 ⁎⁎ 0.15 0.54 ⁎⁎⁎ 0.30 0.61 ⁎⁎⁎ 0.37
OCDF −0.08 n.s. 0.10 −0.03 n.s. 0.05 −0.11 n.s. 0.03 −0.04 n.s. 0.02
TEQs PCDDs 0.40 ⁎⁎ 0.25 0.41 ⁎⁎ 0.21 0.63 ⁎⁎⁎ 0.36 0.66 ⁎⁎⁎ 0.40
TEQs PCDFs 0.38 ⁎⁎ 0.23 0.30 ⁎⁎ 0.14 0.59 ⁎⁎⁎ 0.34 0.65 ⁎⁎⁎ 0.41
Total TEQs 0.42 ⁎⁎⁎ 0.26 0.40 ⁎⁎ 0.20 0.65 ⁎⁎⁎ 0.40 0.69 ⁎⁎⁎ 0.44

β: standardized beta coefficient; n.s. not significant.
For multiple regression analysis in children: dehydroepiandrosterone (DHEA) or CYP17 lyase activity was used as the dependent variable; dioxin congener levels, age, body mass index,
and sex were used as independent variables.
For multiple regression analysis in mothers: androstenedione (A-dione) or 3β-hydroxysteroid dehydrogenase (3β-HSD) activity was used as the dependent variable; dioxin congener
levels, age, and body mass index were used as independent variables.
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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as represented by the higher DDI of total TEQs in Table 2. However, the
quantitative and qualitative distinction between the effects of dioxin ex-
posure by these two routes becomes complex. In accordancewith enzy-
matic activities of the steroid pathway in the adrenal gland, results from
our study indicated that dioxin exposure might increase DHEA in chil-
dren and A-dione in their mother through the same mechanism.

In present study, there are several limitations should be considered.
Firstly, the evaluation of dioxins in children would access more accu-
rately the influence of dioxins exposure on hormone levels. Secondly,
to associate hormone disruption in mothers and paired children, esti-
mation of maternal steroid hormones during pregnancy along with ste-
roid hormones biosynthesized in fetal adrenal gland or the salivary
hormone in baby after birth should be conducted. In accordance with
scope and design of the present study, we could not collect those sam-
ples from pregnant mothers or from such young children.

To our knowledge, present study is the first evaluation of the endo-
crine impacts in the 1-year-old children from the dioxin hotspot region
in Vietnam. Since endocrine disruptions sometimes could not be deter-
mined until onset of adrenarche, it is essential to follow-up those chil-
dren for more clearly observation of impaired endocrine system and
sexual abnormality in particular.

5. Conclusion

Our epidemiological findings on hormone disruption illustrate a re-
lationship between impacts of dioxin exposure on the biosynthesis of
adrenal androgen in mothers and their 1-year-old children. We intend
to follow up children in present study until age of 10 to access more ac-
curately the endocrine impacts of dioxin exposure in pre- and neonatal
period.
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